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Axially Symmetric Solution to Rosen's Field Equations 
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There has been no Kerr-like solution to Rosen's bimetric theory of gravity, in 
the sense that there is no stationary, axially symmetric solution with angular 
momentum term. Here such a solution is derived and investigated. 

1. I N T R O D U C T I O N  

Rosen ' s  b ime t r i c  theo ry  o f  grav i ta t ion  was recognized  by  Stoeger  (1983) 
as a h a r m o n i c  map.  W h i t m a n  et al. (1986) exp lo i t ed  this fact to ob ta in  four  
b r o a d  classes o f  so lu t ions  to Rosen ' s  field equat ions .  Ne i the r  these nor  
Rosen ' s  own (stat ic  spher ica l ly  symmetr ic )  so lu t ion  are Kerr - l ike  in the 
sense that  they  are ax ia l ly  symmet r ic  s ta t ionary  so lu t ions  with an angu la r  
m o m e n t u m  term. It is the  p u r p o s e  o f  this  p a p e r  to p rov ide  an example  of  
one such so lu t ion  and to suggest  at least  a p r e l im ina ry  phys ica l  in te rp re ta t ion  
o f  it. 

It  will be useful  to br ief ly review how the four  classes o f  so lu t ions  were 
ob t a ined  in W h i t m a n  et al. (1986). Briefly, then,  suppose  tha t  R 4 is 
Minkowsk i  space- t ime.  Whi le  Rosen ' s  equa t ions  are covar iant ,  it s implif ies 
mat ters  to take  on R 4 the  canon ica l  coord ina tes  t, x, y, z and  to ident i fy  a 
Loren tz ian  metr ic  on •4 as a m a p  (with s ingular i t ies)  F o f  E4 into the space  

= 4 x 4 symmet r i c  mat r ices  e q u i p p e d  with the Dewi t t  metr ic  ~3. By Stoeger  
(1983), a Loren tz ian  metr ic  satisfies Rosen ' s  field equat ions  if  and  only  if  
F is a h a r m o n i c  m a p  in the  sense of  Eells and  S a m p s o n  (1964), genera l ized  
muta t i s  mu tand i s  to the case o f  s e m i - R i e m a n n i a n  mani fo lds .  
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Although the word "harmonic"  should conjure up elliptic equations, 
our generalized notion of harmonic map is in fact a solution to hyperbolic 
equations, with all that that entails. However, it is fortunate that one aspect 
of  the theory of Eells and Sampson carries over to our case. That is the 
fact that a map F :  ~4_+ M is "harmonic"  if it factors into two maps, F = So 4', 
where 4':N4-+Rn and S:Nn-+ M are such that 4' is harmonic with respect 
to the Euclidean metric Io] on Nn, and S is totally geodesic. This is a real 
simplification, for 4' is "harmonic"  if and only if its component  functions 
are solutions to the three-dimensional wave equation, and S is totally 
geodesic if its restriction to every straight line in R" is of a particular explicit 
fo rm--which  we will describe later. Finally, for our purposes it suffices to 
take n = 3 in order to obtain an angular momentum term, with a spherically 
symmetric exponential damping factor imposed. 

2. DERIVATION OF THE S O L U T I O N  

Let (p, ~b, z) be cylindrical coordinates, that is, 

x = p COS t~ p2= xa + y2 

y = p  sin ~b d c ~ = ( - y d x + x d y ) / p  2 

Let (r, q~, 0) be spherical coordinates, that is, 

p = r sin 0, z =  r cos 0 

The form of our metric is 

ds 2 = em/r(-dt2 + dx2 + dy2 + dz 2) 

+2e  m/r d~ ( d t + d z ) + e m / r - - ( d t + d z )  2 (*) 

Here m is the mass constant and k is the angular momentum constant. 
In order to prove that (*) is a solution to Rosen's field equations with 

flat background metric rl [whose line element is d$ 2 = -dt2+ dx2+ dy2+ d22, 
and which rl we regard as a diagonal matrix: '7 = d i a g ( - 1 ,  1, 1, 1)], we 
shall show that the matrix F of (*) is a harmonic map 

F: R4, ~ - + ~ ,  ~ 

where ~ is the manifold of  symmetric 4 x 4 matrices of signature ( - ,  + ,  
+ ,  +) ,  and c~ is the Dewitt metric (cf. Stoeger, 1983). One sees from (*) 
that F is of the form 

[-(1-�89 6) - ky / r  3 kx/r 3 lk2p2/r6 ] 

F =  em/r [ - ky / r3  1 0 - k y / r  3 [ 
I kx/r3 0 1 kx/r 3 | 
k �89 -kY/r3 kx/r3 l+�89 
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In order  to show that  F is harmonic ,  it suffices to show that  F is a 
compos i t ion  

F = S o $  

where 0 : ~ 4  71 ---> ~ 3  1o [ is a ha rmon ic  map ,  and where  S : R3, i o I ~ J / ,  ~ is 
totally geodesic ,  that  is, where  S maps  straight lines in R 3 into geodesics  
in ~ ,  ~. Here ,  I o[ is the Eucl idean norm (cf. Eells and Lemaire ,  1980). 

The easiest  map  to define is tp. Our  4J is 

= tp(t, x, y, z) = (m / r ,  k y / r  3, kx/r 3) 

It is clear that  tp is harmonic ,  since each of  the coordinate  funct ions is 
harmonic .  

The  m a p  S is defined as 

1 + (U2+ V2)/2 --U V (U2+ 2)/2 

S = S(A, u, v) = e ~ - u  1 0 - 
v 0 1 

(U2+V2)/2 --U V 1 + (U2+ V2)/2.] 

L e m m a  1. S = 77 e x p ( A I +  u X +  v Y ) ,  where 

I = diag (1, 1, 1, 1) 

u X =  
+ Oo o o [oo  ]oo o 
0 0 , v Y =  v 0 0 

- u  0 0 0 v 

Proof  One readily checks that  the matr ices h/,  uX, and v Y  all commute .  
Fur thermore ,  we have that  

( u X ) ( v Y )  = o = ( v r ) ( u X )  

( u X )  3 = ( v Y )  3 = 0 

( v Y ) 2 + ( u X )  2= 

" - ( u 2 + v  2) 0 0 - ( u 2 + v 2 ) ]  

o / 0 0 0 

0 0 0 
U2-~V 2 0 0 U2"q-'l) 2 J 
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Thus, 

exp (AI + u X  + v Y )  

= exp(A) exp(uX) exp(vY) 

= (exp A ) [ I  + u X  +�89 + v Y + � 8 9  2] 

= (exp A ) [ I  + u X  + v Y + � 8 9  2 +�89 2] 

From this it follows that S = ~7 exp(AI + u X  + vY) .  [] 

Lemma 2. Let A = ta + )to, u = tb + Uo, v = te + Vo be the (geodesic) line 
in R 3 through the point ()to, Uo, Vo) with direction numbers a, b, and c. Then 

cr(t) = S( ta  + )to, tb + Uo, tc + Vo) 

is the geodesic through S()to, Uo, Vo) in the direction of the tangent vector 
represented by the symmetric matrix Z:  

Z = r/exp(AoI + UoX + Vo Y ) ( a I  + b X  + e Y )  (**) 

Proof  Differentiating S( ta + Ao, tb + Uo, tc + Vo) with respect to t yields 
(**) at t = 0. In particular, (**) must be symmetric, since it is the derivative 
of a symmetric matrix varying with t. 

Next, the geodesic through S(Ao, Uo, Vo) in the direction of  Z is the 
function of  t (Whitman et aL, 1986) 

~(t)  = S()to, Uo, Vo) exp[tS(Ao, Uo, Vo)-lZ] 

Hence the right side of o-(t) is in fact 

~r(t) = ~7 exp(AoI + uoX + Vo Y )  exp[ t ( a l  + b X  + cY)]  

= ~7 exp[ taI + ) to/+ t bX  + uoX + t o Y +  Vo Y] 

= S ( t a + A o ,  tb + uo, te + vo) [] 

Now Lemmas 1 and 2 yield the desired result: 

Theorem. S is a totally geodesic map of ~3, ]o] into ~ .  In particular, 
F is a harmonic map of ~4 into ~ .  

This completes the proof  that (*) satisfies Rosen's field equations. 

Note 1. A comparison of the metric (*) with Rosen's static, spherically 
symmetric solution 

ds 2 = - e-  rod" dt 2 + e m2/'( dx  2 + dy 2 + dz 2) 

shows that taking k = 0 yields the Rosen static solution with m = - m l  = m2, 
i.e., it yields the conformally flat metric 

ds 2 = e m/ " ( - d t  2 + dx 2 + dy 2 + dz 2) 

This metric (call it 3') is said to be "conformally flat," since the inclusion map 

i: (R4\R1 • (0, O, 0)),  T ~ R4, T/ 

( t , x , y , z )~ - -~ ( t , x , y , z )  
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preserves angles. The map i preserves neither geodesics nor geodesic trajec- 
tories, however�9 We look at the e m/r term as a spherically symmetric damping 
factor�9 

Note 2. I f  k ~ 0, there is an event horizon r 2 = (k sin 0)/ , /2 that is a 
"p inched"  toms,  a torus in which the center hole has zero diameter. 

Note 3. The rank of the map F : ~4. ._) ~// is evidently three, in the sense 
that the differential of  F has rank three as linear transformation�9 

3. PHYSICAL INTERPRETATION OF A STATIONARY 
AXISYMMETRIC S O L U T I O N  TO ROSEN's  FIELD 
EQUATIONS 

�9 .\ 
This stationary axisymmetric soluUon to the field equatlo~s of N. Rosen 

does not seem to have a clear physical interpretation. It possesses the 
Kerr-like, t ime-independent dO dt term, which can be interpretedas constant 
angular momentum in the z direction, due to rotation in the ~b direction, 
around the z axis. 

However, the dt dz and dck dz terms, which have the same constant of 
integration as the dch dt term--i .e. ,  the constant k must be nonzero if d4~ dt 
is. It might represent something like a t ime-independent momentum flux 
in the z direction (off the z axis), whose magnitude is closely linked to the 
angular momentum of the d4~ dt term. It should be noted that, like the dt dck 
term, the dc~ dz and the dt dz terms vanish on the z axis. It is difficult to 
see what this would mean. 

For a Kerr-like axisymmetric solution we would like to keep the d4~ dt 
term, allowing the dt dz and dch dz terms to vanish identically�9 But this 
cannot be done in equation (1). In fact, in the standard treatments of  
physically meaningful stationary axisymmetric solutions, one not only 
demands a metric form that is independent of  ~ (axisymmetry) and of t 
(stationarity), but also requires the symmetry (d~, t ) ~  (-4~, - t )  (cf. Matzner 
and Misner, 1967). This eliminates cross terms between (r, z) and (4~, t), 
for example, d4~ dz and dz dt terms�9 

However, in principle, we can conceive mat te r /momentum flows in 
the z direction that vanish on the z axis and would be the possible source 
of the metric given in equation (1). Such flow would emanate from the 
equatorial plane of the spinning source, moving parallel to, but not on, the 
z axis. The key problem with equation (1), as mentioned above, is the 
intimate link between the azimuthal flow and the flow in the z direction, 
due to the constant k. That does not render it physically meaningless, but 
rather a very peculiar solution in which any azimuthal flow necessitates 
flow in the z direction and vice versa�9 We are presently searching for other 
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s t a t i o n a r y  ax i a l l y  s y m m e t r i c  s o l u t i o n s  to  R o s e n ' s  f ie ld  e q u a t i o n s  t h a t  a re  

m o r e  s t r i c t ly  a n a l o g o u s  to  Ker r .  
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