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Axially Symmetric Solution to Rosen’s Field Equations
with Angular Momentum
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There has been no Kerr-like solution to Rosen’s bimetric theory of gravity, in
the sense that there is no stationary, axially symmetric solution with angular
momentum term. Here such a solution is derived and investigated.

1. INTRODUCTION

Rosen’s bimetric theory of gravitation was recognized by Stoeger (1983)
as a harmonic map. Whitman et al. (1986) exploited this fact to obtain four
broad classes of solutions to Rosen’s field equations. Neither these nor
Rosen’s own (static spherically symmetric) solution are Kerr-like in the
sense that they are axially symmetric stationary solutions with an angular
momentum term. It is the purpose of this paper to provide an example of
one such solution and to suggest at least a preliminary physical interpretation
of it.

It will be useful to briefly review how the four classes of solutions were
obtained in Whitman et al. (1986). Briefly, then, suppose that R* is
Minkowski space-time. While Rosen’s equations are covariant, it simplifies
matters to take on R* the canonical coordinates t, x, y, z and to identify a
Lorentzian metric on R* as a map (with singularities) F of R* into the space
A = 4 x 4 symmetric matrices equipped with the Dewitt metric 4. By Stoeger
(1983), a Lorentzian metric satisfies Rosen’s field equations if and only if
F is a harmonic map in the sense of Eells and Sampson (1964), generalized
mutatis mutandis to the case of semi-Riemannian manifolds.
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Although the word “harmonic” should conjure up elliptic equations,
our generalized notion of harmonic map is in fact a solution to hyperbolic
equations, with all that that entails. However, it is fortunate that one aspect
of the theory of Eells and Sampson carries over to our case. That is the
fact thata map F:R*~ . is ““harmonic” if it factors into two maps, F = So,
where ¢ :R*>R" and S:R" > . are such that ¢ is harmonic with respect
to the Euclidean metric |¢| on R", and § is totally geodesic. This is a real
simplification, for ¢ is “harmonic” if and only if its component functions
are solutions to the three-dimensional wave equation, and S is totally
geodesic if its restriction to every straight line in R" is of a particular explicit
form—which we will describe later. Finally, for our purposes it suffices to
take n =3 in order to obtain an angular momentum term, with a spherically
symmetric exponential damping factor imposed.

2. DERIVATION OF THE SOLUTION
Let (p, ¢, z) be cylindrical coordinates, that is,
x=pcos¢d p =x>+y’
y=psing  dp=(-ydx+xdy)/p’
Let (r, ¢, 8) be spherical coordinates, that is,
p=rsin 6, z=rcos 8
The form of our metric is
ds?=e™/"(—dt*+ dx*+ dy*+ dz?)

kpl k2p2
+2e'"/'—r§— do (dz+dz)+e'"/'—276—(dt+clz)2 (x)

Here m is the mass constant and k is the angular momentum constant.
In order to prove that () is a solution to Rosen’s field equations with
flat background metric n [whose line element is ds* = —dt*+ dx*+ dy* + dz°,
and which n we regard as a diagonal matrix: n=diag(—1,1,1,1)], we
shall show that the matrix F of (*) is a harmonic map
F:R*  n>uM, 4
where  is the manifold of symmetric 4 X4 matrices of signature (—, +,
+,+), and ¥ is the Dewitt metric (cf. Stoeger, 1983). One sees from (%)
that F is of the form
~-(1-3K2p%/1% —ky/r kx/r*  3k*p%/r®
—ky/ v’ 1 0 —ky/r’
kx/ v 0 1 kx/r’
1k2p*/r® —ky/r kx/r 1+3k*p%/rt

F= em/r
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In order to show that F is harmonic, it suffices to show that F is a
composition

F:SO(//

where ¢ :R*, n >R, || is a harmonic map, and where S:R’, |o|~> ., ¥ is

totally geodesic, that is, where S maps straight lines in R® into geodesics

in M, 4. Here, || is the Euclidean norm (cf. Eells and Lemaire, 1980).
The easiest map to define is . Our ¢ is

g =9(t,x,y,2)=(m/r, ky/r*, kx/r’)

It is clear that ¢ is harmonic, since each of the coordinate functions is
harmonic.
The map S is defined as

-1+ W+0v)/2 —u v (u+0Y)/2
—u 1 0 —-u
=S(A =e*
§=SAuv)=e ) 0 1 0
(W +0v?)/2 —u v 1+u’+09)/2

Lemma 1. S=mnexp(Al+uX+vY), where

I'=diag(1,1,1,1)

0 +u 0 O 0 0 —-v O
_ 0 0 -

uX = u u , oY = 0 0 0 O
0 0 0 o v 0 0 v
0 —-u 0 O 0 0 0

Proof. One readily checks that the matrices AL, uX, and vY all commute.
Furthermore, we have that

(uX)(vY)=0=(vY){(uX)
(uX)y=(Y) =0

—(u?+vY) 0 0 —(u*+vd)
0 0 0
0 0 0 0
w4+t 0 0 w4’

(vY)+(uX)’=
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Thus,
exp (A +uX +vY)
=exp(A) exp(uX) exp(vY)
= (exp M)[ I+ uX +3(uX)’ [T+ vY +3(0vY)]
=(exp A)[ I+ uX +vY +3(uX)*+3(vY)?*]
From this it follows that S=n exp(AI+uX+vY). W

Lemma 2. Let A =ta+ Ay, u=thb+u,, v=tc+ v, be the (geodesic) line
in R’ through the point (A, uy, v,) With direction numbers a, b, and ¢. Then

o(t)=S(ta+ Ay, th+uy, tc+ 1)
is the geodesic through S(Ao, Uy, vy) in the direction of the tangent vector
represented by the symmetric matrix Z:
Z=nexp(Ad +u X +v,Y)(al +bX +cY) (%)

Proof. Differentiating S(ta+ Ag, th+ u,, tc+ vy) with respect to ¢ yields
(*%) at ¢ =0. In particular, (**) must be symmetric, since it is the derivative
of a symmetric matrix varying with .

Next, the geodesic through S(A,, ug, vy) in the direction of Z is the
function of t (Whitman et al., 1986)

a(t)=S(Ao, g, vo) exp[tS(Ag, U, vo) ' Z]
Hence the right side of o(?) is in fact
o(t)y=nexp(Aed +u,X +0,Y) exp[t(al + bX +cY)]
=qexpltal + Aol +thX + uX +tcY + v, Y]
= S(ta+ Ay, th+uy, tct+v,) W
Now Lemmas 1 and 2 yield the desired result:

Theorem. S is a totally geodesic map of R’, || into .. In particular,
F is a harmonic map of R* into ..

This completes the proof that (*) satisfies Rosen’s field equations.

Note 1. A comparison of the metric (*) with Rosen’s static, spherically
symmetric solution

ds*>=—e ™" di*+ ™/ (dx*+ dy*+ dz?)
shows that taking k = 0 yields the Rosen static solution with m =—m, = m,,
i.e., it yields the conformally flat metric
ds®>=e™ " (—dt’ + dx*+ dy*+ dz?)
This metric (call it ) is said to be “conformally flat,” since the inclusion map
i (R\R'%(0,0,0)), y>R* 5
(t,x,y,2)=>(t,xy,z2)
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preserves angles. The map i preserves neither geodesics nor geodesic trajec-
tories, however. We look at the e™ " term as a spherically symmetric damping
factor.

Note 2. If k#0, there is an event horizon *= (k sin 6)/+2 that is a
“pinched” torus, a torus in which the center hole has zero diameter.

Note 3. The rank of the map F:R*- / is evidently three, in the sense
that the differential of F has rank three as linear transformation.

3. PHYSICAL INTERPRETATION OF A STATIONARY
AXISYMMETRIC SOLUTION TO ROSEN’s FIELD
EQUATIONS

This stationary axisymmetric solution to the field equati})\ s of N. Rosen
does not seem to have a clear physical interpretation. It%ossesses the
Kerr-like, time-independent d¢ dtf term, which can be interpreted'as constant
angular momentum in the z direction, due to rotation in the ¢ direction,
around the z axis. N,

However, the dt dz and d¢ dz terms, which have the same constant of
integration as the d¢ dt term—i.e., the constant k—must be nonzero if d¢p dt
is. It might represent something like a time-independent momentum flux
in the z direction (off the z axis), whose magnitude is closely linked to the
angular momentum of the d¢ dr term. It should be noted that, like the dt d¢
term, the d¢ dz and the dt dz terms vanish on the z axis. It is difficult to
see what this would mean.

For a Kerr-like axisymmetric solution we would like to keep the d¢ dt
term, allowing the dtdz and d¢ dz terms to vanish identically. But this
cannot be done in equation (1). In fact, in the standard treatments of
physically meaningful stationary axisymmetric solutions, one not only
demands a metric form that is independent of ¢ (axisymmetry) and of ¢
(stationarity), but also requires the symmetry (¢, t) > (—¢, —1t) (cf. Matzner
and Misner, 1967). This eliminates cross terms between (r, z) and (¢, 1),
for example, d¢ dz and dz dt terms.

However, in principle, we can conceive matter/momentum flows in
the z direction that vanish on the z axis and would be the possible source
of the metric given in equation (1). Such flow would emanate from the
equatorial plane of the spinning source, moving parallel to, but not on, the
z axis. The key problem with equation (1), as mentioned above, is the
intimate link between the azimuthal flow and the flow in the z direction,
due to the constant k. That does not render it physically meaningless, but
rather a very peculiar solution in which any azimuthal flow necessitates
flow in the z direction and vice versa. We are presently searching for other
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stationary axially symmetric solutions to Rosen’s field equations that are
more strictly analogous to Kerr.
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